Protein expression and functional analysis of the FHIT gene in human tumor cells.

نویسندگان

  • G A Otterson
  • G H Xiao
  • J Geradts
  • F Jin
  • W D Chen
  • W Niklinska
  • F J Kaye
  • R S Yeung
چکیده

BACKGROUND The fragile histidine triad (FHIT) gene at chromosome 3p14.2 has been proposed to be a candidate tumor suppressor gene in human cancers. To test whether FHIT exhibits the functional properties of a tumor suppressor gene, we studied the expression of its protein (pFHIT) in human carcinoma cells and examined the ability of FHIT to inhibit the neoplastic phenotype of cancer cells. METHODS Subcellular localization and patterns of protein expression in tumor cells were determined by immunohistochemical analysis and immunoblotting with the use of polyclonal anti-pFHIT antisera. In tumor cells with undetectable pFHIT, we examined the effect of recombinant pFHIT expression on morphology, growth rate, colony formation, and in vivo tumor formation. RESULTS We demonstrated that pFHIT is a cytoplasmic 17-kd polypeptide whose expression could not be detected in 30 of 52 human carcinoma cell lines tested. We observed, however, that the stable overexpression of pFHIT did not alter cell morphology, inhibit colony formation, or inhibit cell proliferation in vitro. Furthermore, overexpression of pFHIT did not lead to altered cell cycle kinetics in dividing cells. The in vivo tumorigenicity of a tumor cell line that expressed high levels of recombinant pFHIT was equivalent to that of control transfectants and of parental cells. CONCLUSIONS These results suggest that the replacement of pFHIT in human carcinoma cells does not suppress tumor cell growth and that this protein may be involved in tumorigenesis in ways that are distinct from the "classic" tumor suppressor paradigm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

N-Terminal Domain of Fragile Histidine Triad Exerts Potent Cytotoxic Effect in HT1080 Cells

Fragile histidine triad (FHIT) serves a critical function as a tumor suppressor that inhibits p53 degradation by mouse double minute 2 (MDM2). The functional domains of FHIT involved in tumor inhibition was interpreted. In-silico screening data were employed to construct truncated forms of FHIT to assess their cytotoxic effects on the HT1080 cell line. Full FHIT expression was confirmed by west...

متن کامل

N-Terminal Domain of Fragile Histidine Triad Exerts Potent Cytotoxic Effect in HT1080 Cells

Fragile histidine triad (FHIT) serves a critical function as a tumor suppressor that inhibits p53 degradation by mouse double minute 2 (MDM2). The functional domains of FHIT involved in tumor inhibition was interpreted. In-silico screening data were employed to construct truncated forms of FHIT to assess their cytotoxic effects on the HT1080 cell line. Full FHIT expression was confirmed by west...

متن کامل

The Effect of Herpes Simplex Virus Virion Host Shutoff Gene- a New Suicide Gene- on Tumor Cells

Background: The herpes simplex virus (HSV) UL41 gene product, virion host shutoff (Vhs) protein, mediates the rapid degradation of both viral and cellular mRNA. This ability suggests that Vhs protein can be used as a suicide gene in cancer gene therapy applications. The recent reports have shown that the degradation of cellular mRNA during herpes simplex infection is selective. RNA containing A...

متن کامل

A Mimic of the Tumor Microenvironment on GPR30 Gene Expression in Breast Cancer

Introduction: The G-protein coupled receptor 30 (GPR30) gene is a member of the G-protein coupled receptor (GPCR) family; involved in breast, endometrial, and ovarian cancers. Many GPCR receptors that are implicated in several types of human cancers are correlated with increased cell proliferation and tumor progression; especially GPR30 gene. Methods: The breast cancer MCF-7 and MDA-MB-231 cel...

متن کامل

P-227: Functional Analysis of The I.a,I.b, I.c and I.d (PII) Promoters of CYP19 (aromatase) Gene in Granulosa Cells of Polycystic Ovaries Patients and The Role of Letrozole and Antisensearom on CYP19 Gene Expression Inhibition

Background: The key enzyme of estrogen biosynthesis, aromatase cytochrome P450,is encoded by the CYP19 gene.CYP19 plays an important role in the development,function,an regulation of the female reproduction cycle. Thus, it is the potential candidate gene affecting fertility performance in human. CYP19 transcripts are expressed mainly in the ovary,testes,breast,adipose tissue and brain. Tissue e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the National Cancer Institute

دوره 90 6  شماره 

صفحات  -

تاریخ انتشار 1998